xy06¶
- erfa.xy06(date1, date2)[source]¶
X,Y coordinates of celestial intermediate pole from series based on IAU 2006 precession and IAU 2000A nutation.
- Parameters:
- date1double array
- date2double array
- Returns:
- xdouble array
- ydouble array
Notes
Wraps ERFA function
eraXy06
. The ERFA documentation is:- - - - - - - - e r a X y 0 6 - - - - - - - - X,Y coordinates of celestial intermediate pole from series based on IAU 2006 precession and IAU 2000A nutation. Given: date1,date2 double TT as a 2-part Julian Date (Note 1) Returned: x,y double CIP X,Y coordinates (Note 2) Notes: 1) The TT date date1+date2 is a Julian Date, apportioned in any convenient way between the two arguments. For example, JD(TT)=2450123.7 could be expressed in any of these ways, among others: date1 date2 2450123.7 0.0 (JD method) 2451545.0 -1421.3 (J2000 method) 2400000.5 50123.2 (MJD method) 2450123.5 0.2 (date & time method) The JD method is the most natural and convenient to use in cases where the loss of several decimal digits of resolution is acceptable. The J2000 method is best matched to the way the argument is handled internally and will deliver the optimum resolution. The MJD method and the date & time methods are both good compromises between resolution and convenience. 2) The X,Y coordinates are those of the unit vector towards the celestial intermediate pole. They represent the combined effects of frame bias, precession and nutation. 3) The fundamental arguments used are as adopted in IERS Conventions (2003) and are from Simon et al. (1994) and Souchay et al. (1999). 4) This is an alternative to the angles-based method, via the ERFA function eraFw2xy and as used in eraXys06a for example. The two methods agree at the 1 microarcsecond level (at present), a negligible amount compared with the intrinsic accuracy of the models. However, it would be unwise to mix the two methods (angles-based and series-based) in a single application. Called: eraFal03 mean anomaly of the Moon eraFalp03 mean anomaly of the Sun eraFaf03 mean argument of the latitude of the Moon eraFad03 mean elongation of the Moon from the Sun eraFaom03 mean longitude of the Moon's ascending node eraFame03 mean longitude of Mercury eraFave03 mean longitude of Venus eraFae03 mean longitude of Earth eraFama03 mean longitude of Mars eraFaju03 mean longitude of Jupiter eraFasa03 mean longitude of Saturn eraFaur03 mean longitude of Uranus eraFane03 mean longitude of Neptune eraFapa03 general accumulated precession in longitude References: Capitaine, N., Wallace, P.T. & Chapront, J., 2003, Astron.Astrophys., 412, 567 Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855 McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003), IERS Technical Note No. 32, BKG Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M., Francou, G. & Laskar, J., Astron.Astrophys., 1994, 282, 663 Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M., 1999, Astron.Astrophys.Supp.Ser. 135, 111 Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981 This revision: 2021 May 11 Copyright (C) 2013-2023, NumFOCUS Foundation. Derived, with permission, from the SOFA library. See notes at end of file.