atciqn¶
- erfa.atciqn(rc, dc, pr, pd, px, rv, astrom, b)[source]¶
Quick ICRS, epoch J2000.0, to CIRS transformation, given precomputed star-independent astrometry parameters plus a list of light- deflecting bodies.
- Parameters:
- rcdouble array
- dcdouble array
- prdouble array
- pddouble array
- pxdouble array
- rvdouble array
- astromeraASTROM array
- beraLDBODY array
- Returns:
- ridouble array
- didouble array
Notes
Wraps ERFA function
eraAtciqn
. The ERFA documentation is:- - - - - - - - - - e r a A t c i q n - - - - - - - - - - Quick ICRS, epoch J2000.0, to CIRS transformation, given precomputed star-independent astrometry parameters plus a list of light- deflecting bodies. Use of this function is appropriate when efficiency is important and where many star positions are to be transformed for one date. The star-independent parameters can be obtained by calling one of the functions eraApci[13], eraApcg[13], eraApco[13] or eraApcs[13]. If the only light-deflecting body to be taken into account is the Sun, the eraAtciq function can be used instead. If in addition the parallax and proper motions are zero, the eraAtciqz function can be used. Given: rc,dc double ICRS RA,Dec at J2000.0 (radians) pr double RA proper motion (radians/year, Note 3) pd double Dec proper motion (radians/year) px double parallax (arcsec) rv double radial velocity (km/s, +ve if receding) astrom eraASTROM star-independent astrometry parameters: pmt double PM time interval (SSB, Julian years) eb double[3] SSB to observer (vector, au) eh double[3] Sun to observer (unit vector) em double distance from Sun to observer (au) v double[3] barycentric observer velocity (vector, c) bm1 double sqrt(1-|v|^2): reciprocal of Lorenz factor bpn double[3][3] bias-precession-nutation matrix along double longitude + s' (radians) xpl double polar motion xp wrt local meridian (radians) ypl double polar motion yp wrt local meridian (radians) sphi double sine of geodetic latitude cphi double cosine of geodetic latitude diurab double magnitude of diurnal aberration vector eral double "local" Earth rotation angle (radians) refa double refraction constant A (radians) refb double refraction constant B (radians) n int number of bodies (Note 3) b eraLDBODY[n] data for each of the n bodies (Notes 3,4): bm double mass of the body (solar masses, Note 5) dl double deflection limiter (Note 6) pv [2][3] barycentric PV of the body (au, au/day) Returned: ri,di double CIRS RA,Dec (radians) Notes: 1) Star data for an epoch other than J2000.0 (for example from the Hipparcos catalog, which has an epoch of J1991.25) will require a preliminary call to eraPmsafe before use. 2) The proper motion in RA is dRA/dt rather than cos(Dec)*dRA/dt. 3) The struct b contains n entries, one for each body to be considered. If n = 0, no gravitational light deflection will be applied, not even for the Sun. 4) The struct b should include an entry for the Sun as well as for any planet or other body to be taken into account. The entries should be in the order in which the light passes the body. 5) In the entry in the b struct for body i, the mass parameter b[i].bm can, as required, be adjusted in order to allow for such effects as quadrupole field. 6) The deflection limiter parameter b[i].dl is phi^2/2, where phi is the angular separation (in radians) between star and body at which limiting is applied. As phi shrinks below the chosen threshold, the deflection is artificially reduced, reaching zero for phi = 0. Example values suitable for a terrestrial observer, together with masses, are as follows: body i b[i].bm b[i].dl Sun 1.0 6e-6 Jupiter 0.00095435 3e-9 Saturn 0.00028574 3e-10 7) For efficiency, validation of the contents of the b array is omitted. The supplied masses must be greater than zero, the position and velocity vectors must be right, and the deflection limiter greater than zero. Called: eraPmpx proper motion and parallax eraLdn light deflection by n bodies eraAb stellar aberration eraRxp product of r-matrix and pv-vector eraC2s p-vector to spherical eraAnp normalize angle into range 0 to 2pi This revision: 2021 April 3 Copyright (C) 2013-2023, NumFOCUS Foundation. Derived, with permission, from the SOFA library. See notes at end of file.